Fractional Laplacian with singular drift
نویسندگان
چکیده
منابع مشابه
Regularity for the Supercritical Fractional Laplacian with Drift
We consider the linear stationary equation defined by the fractional Laplacian with drift. In the supercritical case, wherein the dominant term is given by the drift instead of the diffusion component, we prove local regularity of solutions in Sobolev spaces employing tools from the theory of pseudo-differential operators. The regularity of solutions in the supercritical case is as expected fro...
متن کاملFunctional fractional boundary value problems with singular ϕ-Laplacian
This paper discusses the existence of solutions of the fractional differential equations D(φ(Du)) = Fu, D(φ(Du)) = f(t, u, Du) satisfying the boundary conditions u(0) = A(u), u(T ) = B(u). Here μ, α ∈ (0, 1], ν ∈ (0, α], D is the Caputo fractional derivative, φ ∈ C(−a, a) (a > 0), F is a continuous operator, A,B are bounded and continuous functionals and f ∈ C([0, T ] × R). The existence result...
متن کاملThe Brezis–nirenberg Problem for the Laplacian with a Singular Drift in R and S
We consider the Brezis–Nirenberg problem for the Laplacian with a singular drift for a (geodesic) ball in both R and S, 3 ≤ n ≤ 5. The singular drift we consider derives from a potential which is symmetric around the center of the (geodesic) ball. Here the potential is given by a parameter (δ say) times the logarithm of the distance to the center of the ball. In both cases we determine the exac...
متن کاملStable process with singular drift
Suppose that d ≥ 2 and α ∈ (1, 2). Let μ = (μ, . . . , μ) be such that each μ is a signed measure on R belonging to the Kato class Kd,α−1. In this paper, we consider the stochastic differential equation dXt = dSt + dAt, where St is a symmetric α-stable process on R and for each j = 1, . . . , d, the j-th component of At is a continuous additive functional of finite variation with respect to X w...
متن کاملOptimal regularity of solutions to the obstacle problem for the fractional Laplacian with drift
We prove existence, uniqueness and optimal regularity of solutions to the stationary obstacle problem defined by the fractional Laplacian operator with drift, in the subcritical regime. As in [1], we localize our problem by considering a suitable extension operator introduced in [2]. The structure of the extension equation is different from the one constructed in [1], in that the obstacle funct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Studia Mathematica
سال: 2011
ISSN: 0039-3223,1730-6337
DOI: 10.4064/sm207-3-3